Detecting Delay Flaws by Very-Low-Voltage Testing

Jonathan T.-Y. Chang and Edward J. McCluskey
Center for Reliable Computing
Stanford University

Purpose
- Detect Weak CMOS ICs at Low Cost
- Provide an Alternative to Burn-in
- Provide an Alternative to IDDQ

Outline
- Introduction
- Timing Defects
 - Causes
 - Failure modes
- CMOS Propagation Delay T_d
 - Voltage dependence
 - T_d change rate
- Choosing Supply Voltage V_{dd}
 - Delay flaws
 - Conclusions

Introduction
- Delay Flaws
 - Excess delay in short path
 - Intermittent, early-life failures
- Previous Work
 - Supply voltage 2V to 2.5V for VLV testing
 - Test speed

Timing Defect Causes
1. Transmission Gate Opens
2. Threshold Voltage Shifts
3. Diminished-Drive
4. Defective Buffers
5. Gate Oxide Shorts
6. Metal Shorts
7. High-Resistance Interconnects
8. Via Defects
9. Tunneling Opens

Timing Failure Modes
1. Transmission Gate Opens
 - NMOS or PMOS transistor cannot pass signals
 - Degraded output signals
 - Next gates weakly driven, slower
2. Threshold Voltage Shifts
 - Smaller transconductance, driving strength
 - NMOS transistors bigger effects
 - Increased gate delays, slow-to-fall signals
Timing Failure Modes

Diminished-Drive
- High-drive gates drive long wires, large fanout
- Redundant components cannot pass signals
- Increased gate delays, slow-to-rise, slow-to-fall

Defective Buffers
- Internal shorts
 - Degraded signals, high leakage,
 longer gate delays, longer interconnect delays
- Open faults
 - Cannot pass signals, stuck-open

Gate Oxide Shorts and Metal Shorts
- Degraded signals, increased leakage

High Resistance Interconnects
- Increased RC delays, slow-to-change along interconnects

Via Defects
- High resistance wires, opens, or shorts
- Increased RC delays, slow-to-change, stuck-open, or high leakage

Tunneling Opens
- Open interconnect
- No capacitive coupling between two ends
- Tunneling currents across opens
 - Pass signals at low frequency,
 fail at high frequency
- Gross delay faults
- Delay fault testing effective

VLV Testing Effective
- Degraded signals - 1, 4, 5, 6, 8
- Diminished-drive gates - 2, 3

VLV Testing Not Effective for High Resistance Interconnects
- RC delay does not change at low voltage
- Percentage of delay due to gates increases at low voltage
- Use delay fault testing at normal voltage

Outline

- Introduction
- Timing Defects
 - Causes
 - Failure modes
 - CMOS Propagation Delay T_d
 - Voltage dependence
 - T_d change rate
 - Choosing Supply Voltage V_{dd}
 - Delay flaws
 - Conclusions
Detecting Delay Flaws by Very-Low-Voltage Testing

CMOS Propagation Delay T_d
- Voltage Dependence
- Smaller driving capability at low voltage

\[T_d = \frac{C_L \times V_{dd}}{\mu \cdot C_{ox} (W/L) (V_{dd} - V_i)^2} = K \frac{V_{dd}}{(V_{dd} - V_i)^2} \]

CMOS T_d - Degraded Signals
- Input Signal is Degraded to V_{dd}/a
 - T_{wd}: T_d of weakly driven gate
 \[T_{wd}(V_{dd}) = K \frac{V_{dd}}{(V_{dd}/a - V_i)^2} = a \times T_d(V_{dd}/a) \]
 - $T_d(V_{dd}/a) = K \frac{V_{dd}}{(V_{dd}/a - V_i)^2}$
- Similar Relationship for Threshold Voltage Shifts
 - T_{sh}: T_d of threshold-voltage-shifted gates
 \[T_{sh}(V_{dd}) = a_s \times T_d(V_{dd}/a_s) \]

CMOS T_d - Delay Ratios
- Weakly-Driven and Fault-Free Gates
 - $T_{wd}(V_{dd}) / T_d(V_{dd})$
 - Increase significantly at low voltage

<table>
<thead>
<tr>
<th>V_{dd}</th>
<th>V_{dd}/V_{in}</th>
<th>$T_{wd}(V_{dd})$</th>
<th>$T_d(V_{dd})$</th>
<th>V_{dd}/V_{in} Delay Ratio</th>
<th>$T_{wd}(V_{dd})$ Delay Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>2.2</td>
<td>680ps</td>
<td>1.9</td>
<td>28.3ns</td>
<td>41.7</td>
</tr>
<tr>
<td>1.4</td>
<td>2.4</td>
<td>560ps</td>
<td>1.8</td>
<td>8.4ns</td>
<td>14.9</td>
</tr>
<tr>
<td>1.6</td>
<td>2.5</td>
<td>480ps</td>
<td>1.7</td>
<td>4.1ns</td>
<td>8.6</td>
</tr>
<tr>
<td>1.6</td>
<td>2.7</td>
<td>410ps</td>
<td>1.6</td>
<td>2.5ns</td>
<td>6.1</td>
</tr>
<tr>
<td>2.0</td>
<td>3.4</td>
<td>260ps</td>
<td>1.4</td>
<td>800ps</td>
<td>3.0</td>
</tr>
<tr>
<td>3.3</td>
<td>5.6</td>
<td>120ps</td>
<td>1.2</td>
<td>200ps</td>
<td>1.7</td>
</tr>
</tbody>
</table>

T_d Change Rate
- $T_d(V_{dd} - \Delta V_{dd}) / T_d(V_{dd})$, $\Delta V_{dd} = 0.2V$

V_{dd} for VLV Testing
- T_d Change Rate Significant
 - Between $2V_{i}$ and $2.5V_{i}$
 - Similar to previous conclusion [Chang 96]
- Use Several Delay Flaws to Verify This Statement
 - Transmission gate opens
 - Threshold voltage shifts
 - Diminished-drive

Outline
- Introduction
- Timing Defects
 - Causes
 - Failure modes
- CMOS Propagation Delay T_d
 - Voltage dependence
 - T_d change rate
 - Choosing Supply Voltage V_{dd}
 - Delay flaws
 - Conclusions

Jonathan Chang-ITC96

Page 3

October 23, 1996
Detecting Delay Flaws by Very-Low-Voltage Testing

Transmission Gate Opens

Simulated Circuits
- Full adder cell built by pass-gate logic
- Transmission gate opens in T1 and T3

Simulation Setup
Incorporate faults into CSA11 and CSA22 cell

Threshold Voltage Shifts

Simulated Circuits
- Global Threshold Voltage Shifts

Diminished-Drive

Simulated Circuit
- T_d measured from V_a to V_{out}

Supply Voltage $V_{dd} / \frac{V_{th}}{V_{tn}}$ Path Delay Ratio T_d (faulty) / T_d (fault-free)

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>$V_{dd} / \frac{V_{th}}{V_{tn}}$</th>
<th>CSA22 T1 NMOS Open</th>
<th>CSA22 T1 PMOS Open</th>
<th>CSA22 T3 NMOS Open</th>
<th>CSA22 T3 PMOS Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>2.0</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
</tr>
<tr>
<td>1.4</td>
<td>2.5</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
</tr>
<tr>
<td>1.6</td>
<td>2.6</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
</tr>
<tr>
<td>1.7</td>
<td>2.6</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
<td>s-o</td>
</tr>
<tr>
<td>1.8</td>
<td>3.1</td>
<td>5.1</td>
<td>1.5</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>2.0</td>
<td>3.4</td>
<td>8.1</td>
<td>1.3</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>3.3</td>
<td>5.6</td>
<td>1.3</td>
<td>1.1</td>
<td>1.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

* stuck-open

Supply Voltage $V_{dd} / \frac{V_{th}}{V_{tn}}$ Delay Ratio T_d (faulty) / T_d (fault-free)

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>$V_{dd} / \frac{V_{th}}{V_{tn}}$</th>
<th>$\Delta V_t = 0.2V$</th>
<th>$\Delta V_t = 0.3V$</th>
<th>$\Delta V_t = 0.4V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>2.0</td>
<td>1.25</td>
<td>1.53</td>
<td>1.98</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>1.15</td>
<td>1.48</td>
<td>1.92</td>
</tr>
<tr>
<td>1.6</td>
<td>2.7</td>
<td>1.12</td>
<td>1.32</td>
<td>1.65</td>
</tr>
<tr>
<td>1.7</td>
<td>2.7</td>
<td>1.19</td>
<td>1.23</td>
<td>1.43</td>
</tr>
<tr>
<td>1.8</td>
<td>2.9</td>
<td>1.13</td>
<td>1.24</td>
<td>1.36</td>
</tr>
<tr>
<td>1.9</td>
<td>3.0</td>
<td>1.08</td>
<td>1.06</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Supply Voltage $V_{dd} / \frac{V_{th}}{V_{tn}}$ Diminished-Drive

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>$V_{dd} / \frac{V_{th}}{V_{tn}}$</th>
<th>$\Delta V_t = 0.2V$</th>
<th>$\Delta V_t = 0.3V$</th>
<th>$\Delta V_t = 0.4V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.9</td>
<td>3.25</td>
<td>2.84</td>
<td>2.30</td>
</tr>
<tr>
<td>1.2</td>
<td>2.0</td>
<td>3.27</td>
<td>2.83</td>
<td>2.36</td>
</tr>
<tr>
<td>1.3</td>
<td>2.1</td>
<td>3.29</td>
<td>2.84</td>
<td>2.30</td>
</tr>
<tr>
<td>1.4</td>
<td>2.3</td>
<td>2.72</td>
<td>1.85</td>
<td>1.39</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>2.66</td>
<td>1.88</td>
<td>1.39</td>
</tr>
<tr>
<td>2.0</td>
<td>3.4</td>
<td>2.27</td>
<td>1.36</td>
<td>1.17</td>
</tr>
<tr>
<td>3.3</td>
<td>5.6</td>
<td>1.87</td>
<td>1.22</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Detecting Delay Flaws by Very-Low-Voltage Testing

Summary

<table>
<thead>
<tr>
<th>Causes</th>
<th>Detected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission gate opens</td>
<td>V D I</td>
</tr>
<tr>
<td>Threshold voltage shifts</td>
<td>V D I</td>
</tr>
<tr>
<td>Diminished-drive gates</td>
<td>V D I</td>
</tr>
<tr>
<td>Defective buffers</td>
<td>V D I</td>
</tr>
<tr>
<td>Gate oxide shorts</td>
<td>V D I</td>
</tr>
<tr>
<td>Metal shorts</td>
<td>V D I</td>
</tr>
<tr>
<td>High resistance interconnects</td>
<td>V D I</td>
</tr>
<tr>
<td>Via defects</td>
<td>V D I</td>
</tr>
<tr>
<td>Tunneling opens</td>
<td>V D I</td>
</tr>
</tbody>
</table>

V: VLV testing
D: delay fault testing
I: IDDQ testing

Test Speed

- Gate and Interconnect Delays Scale Differently as V_{dd} is Reduced
 - All CMOS gate delays scale similarly when V_{dd} is changed
 - Interconnect delays remain almost the same at different V_{dd}
- Must Characterize Speed-Voltage Relationship More Thoroughly
 - Shmoo plots
 - Test Speed No Worse Than 10 Times Slower

Conclusions

- VLV Testing Can Detect
 - Transmission gate opens
 - Threshold voltage shifts
 - Diminished-drive
 - Gate oxide shorts
 - Metal shorts
- Supply Voltage $2V_{i}$ to $2.5V_{i}$ for VLV Testing

Jonathan Chang-ITC96
Page 5
October 23, 1996