Testing for Resistive Opens in FPGA

Mehdi Baradaran Tahoori
Stanford CRC
October 29, 2001

Outline
- Introduction
 ◆ Resistive open in ASIC
 ◆ FPGA
- New Technique
- Simulation Results
- Summary

Resistive Open
- Imperfect connection between two nodes
 ◆ Defect resistance
- Causes:
 ◆ Bad Contact
 ◆ Bad Via
 ◆ Bad Transistor
 ◆ Thin Wire

Modeling
- Delay of defective chain
 \[Delay = [R_n(V_{DD}) + R_{o/T}] \cdot C \]
- \(R_{o/T}(V_{DD}) \): Transistor turn-on resistance
 ◆ Function of \(V_{DD} \)

Terminology
- Delay Delta [Li ITC01]
 ◆ Defective Circuit Delay – Good Circuit Delay
- Delay Ratio
 \[\frac{\text{Defective Circuit Delay}}{\text{Good Circuit Delay}} \]
- Testing for resistive open
 ◆ Making delay ratio bigger

Issues in ASIC
- Fixed circuit
- Controllable Parameters
 ◆ Test Voltage
 ◆ Test Temperature
 ◆ < 10% change [Li, ITC01]
Testing for Resistive Opens in FPGA

Outline

- Introduction
 - Resistive open in ASIC
 - FPGA
 - New Technique
 - Simulation Results
 - Summary

Switch Matrix

Issues in FPGA

- Circuit is NOT fixed
 - Reprogrammable
 - Lots of available unused routing resources
 - Even with 100% logic utilization
- Controllable parameters
 - Test voltage
 - Test temperature
 - Load capacitance

Modeling in FPGA

- Simple routing path
 - Consist of PIP and logic blocks

SPICE Simulation

- TSMC 0.18 technology
- Different voltages and defect values
 - Nominal: 2.5 V
Testing for Resistive Opens in FPGA

Voltage Effect on Delay

Delay vs Defect size

Delay Delta

Delay Delta

Delay Ratio

Delay Ratio

Conclusion

- Higher voltage higher delay ratio
 - Better detectability
 - At most 10% improvement
 - Still need at speed test

New Technique

- Change load capacitance
- By activating additional paths
- Increase delay ratio significantly

Circuit Model

- Adding one additional fanout
- Turning on one more PIP
- Maximum number of fanouts
- Number of PIPs connected to A
Testing for Resistive Opens in FPGA

Delay with Additional Fanouts

Delay with Additional Branches

Delay Delta

Delay Delta with Additional Branches

Delay Ratio

Delay Ratio with Additional Branches

SPICE Simulation Results

- Consider only nominal voltage
- Significant increase in delay ratio
 - Almost twice with one additional fanout
 - Proportional with number of fanouts
- Better results for larger defects
- No need to at-speed test

More Improvement

- Consider line segments in additional fanouts
- When PIPs are not buffered
 - Contributed to load capacitance

Circuit Model

- Wire modeled as RC network
 - Lumped model

Mehdi Baradaran Tahoori
Testing for Resistive Opens in FPGA

SPICE Simulation Setup
- TSMS 0.18 μm technology
- Two kinds of wires
 - Short Wire (100 μm)
 - Single lines
 - $R_w = 10 \, \Omega$, $C_w = 43 \, \text{fF}$
 - Long wire (1.4 mm)
 - Hex and long lines
 - $R_w = 140 \, \Omega$, $C_w = 615 \, \text{fF}$

Delay with Wires
- Graph showing delay with wires for different branch conditions:
 - No Branch
 - 1 Branch
 - 2 Branches
 - Short Wire
 - Long Wire

Delay Delta
- Graph showing delay delta for different conditions:
 - Graph axes: Defect Value (K ohm) vs. Delay Delta (ns)

Delay Ratio
- Graph showing delay ratio for different conditions:
 - Graph axes: Defect Value (K ohm) vs. Delay Ratio

Simulation Results
- Promising
- One additional PIP + short wire
 - Better than two additional PIPs
- More effective with longer wires
- Delay ratio several times increased
- Detect fault at lower tester speed
- Avoid at-speed test

Summary
- Resistive opens in FPGAs
 - Increase load capacitance
 - Additional fanouts
 - Programmability
 - Abundant unused PIPs
- New technique
 - Add more fanouts
 - For buffered PIPs
 - Use line segments in fanouts
 - For unbufferd PIPs
Testing for Resistive Opens in FPGA

Summary (con’t)
- Simulation results
- Multiple times improvement
- Scalable
- Avoid at-speed test